Non-Newtonian fluid flow in elastic tubes
نویسندگان
چکیده
The knowledge on the non-Newtonian fluid flow behavior in inflatable and collapsible elastic tubes is important to applications such as biofluid mechanics in human body and the transport of food and liquids in pharynx (throat), esophagus and intestines. The ultrasound Doppler based velocity profiles are measured at a fixed position from the outlet of a horizontal collapsible elastic tube immersed in a liquid filled chamber, whose pressure is maintained at a constant value during steady laminar flow of a shear thinning xanthan aqueous solution. For a given volume flow rate and a critical external chamber pressure, the tube is buckled. The shape of the deformed cross section visually observed has two lobes, above and below the horizontal axis through the tube center, with no contact between tube’s two vertical planes. As the external chamber pressure increased, the width at the tube center and area of cross section of the two lobed-shaped deformed tube decreased. Consequently, the measured maximum flow velocity at the center of the tube width increased. The shear rate dependent viscosity of xanthan solution was measured using a rheometer.
منابع مشابه
Vibration Analysis of Carotid Arteries Conveying Non-Newtonian Blood Flow Surrounding by Tissues
The high blood rate that often occurs in arteries may play a role in artery failure and tortuosity which leads to blackouts, transitory ischemic attacks and other diseases. However, vibration and instability analysis of carotid arteries are lacking. The objective of this study is to investigate the vibration and instability of the carotid arteries conveying blood under axial tension with surrou...
متن کاملEffects of non-newtonian properties of blood flow on magnetic nanoparticle targeted drug delivery
Objective(s): One applications of nanotechnology is in the area of medicine which is called nanomedicine. Primary instruments in nanomedicine can help us to detect diseases and used for drug delivery to inaccessible areas of human tissues. An important issue in simulating the motion of nanoparticles is modeling blood flow as a Newtonian or non-Newtonian fluid. Sometimes blood flow is simulated ...
متن کاملMathematical modelling of Sisko fluid flow through a stenosed artery
In the present study, the nonlinear model of non-Newtonian blood flow in cosine-shape stenosed elastic artery is numerically examined. The model is carried out for axisymmetric, two-dimensional and fully developed blood flow. The vessel wall is assumed to be have time-dependent radius that is important factor for study of blood flow. The cosine-shape stenosis convert to rigid artery by using a ...
متن کاملStudy of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction
Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...
متن کاملNavier-Stokes Flow in Cylindrical Elastic Tubes
Analytical expressions correlating the volumetric flow rate to the inlet and outlet pressures are derived for the time-independent flow of Newtonian fluids in cylindrically-shaped elastic tubes using a one-dimensional Navier-Stokes flow model with two pressure-area constitutive relations. These expressions for elastic tubes are the equivalent of Poiseuille and Poiseuille-type expressions for ri...
متن کامل